A New Method for Segmentation of Colour Images Applied to Immunohistochemically Stained Cell Nuclei
نویسندگان
چکیده
A new method for segmenting images of immunohistochemically stained cell nuclei is presented. The aim is to distinguish between cell nuclei with a positive staining reaction and other cell nuclei, and to make it possible to quantify the reaction. First, a new supervised algorithm for creating a pixel classifier is applied to an image that is typical for the sample. The training phase of the classifier is very user friendly since only a few typical pixels for each class need to be selected. The classifier is robust in that it is non-parametric and has a built-in metric that adapts to the colour space. After the training the classifier can be applied to all images from the same staining session. Then, all pixels classified as belonging to nuclei of cells are grouped into individual nuclei through a watershed segmentation and connected component labelling algorithm. This algorithm also separates touching nuclei. Finally, the nuclei are classified according to their fraction of positive pixels.
منابع مشابه
A multistep image analysis method to increase automated identification efficiency in immunohistochemical nuclear markers with a high background level
Background In anatomical and surgical pathology, the customary method of manual observation and measurement of immunohistochemically stained markers from microscopic images is tedious, expensive and time consuming. There is great demand for automated procedures for analyzing digital images (DIs) of these markers [1] given that they reduce human variability in the evaluation of stained markers [...
متن کاملAutomatic extraction of cell nuclei from H&E-stained histopathological images.
Extraction of cell nuclei from hematoxylin and eosin (H&E)-stained histopathological images is an essential preprocessing step in computerized image analysis for disease detection, diagnosis, and prognosis. We present an automated cell nuclei segmentation approach that works with H&E-stained images. A color deconvolution algorithm was first applied to the image to get the hematoxylin channel. U...
متن کاملAutomatic Quantification of Immunohistochemically Stained Cell Nuclei Based on Standard Reference Cells
A fully automatic method for quantification of images of immunohistochemically stained cell nuclei by computing area proportions, is presented. Agarose embedded cultured fibroblasts were fixed, paraffin embedded and sectioned at 4 microm. They were then stained together with 4 microm sections of the test specimen obtained from bladder cancer material. A colour based classifier is automatically ...
متن کاملA New Algorithm for Skin Lesion Border Detection in Dermoscopy Images
Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...
متن کاملValidation of various adaptive threshold methods of segmentation applied to follicular lymphoma digital images stained with 3,3’-Diaminobenzidine&Haematoxylin
UNLABELLED The comparative study of the results of various segmentation methods for the digital images of the follicular lymphoma cancer tissue section is described in this paper. The sensitivity and specificity and some other parameters of the following adaptive threshold methods of segmentation: the Niblack method, the Sauvola method, the White method, the Bernsen method, the Yasuda method an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 1997